

JK Tyre & Industries Ltd Chennai Tyre Plant

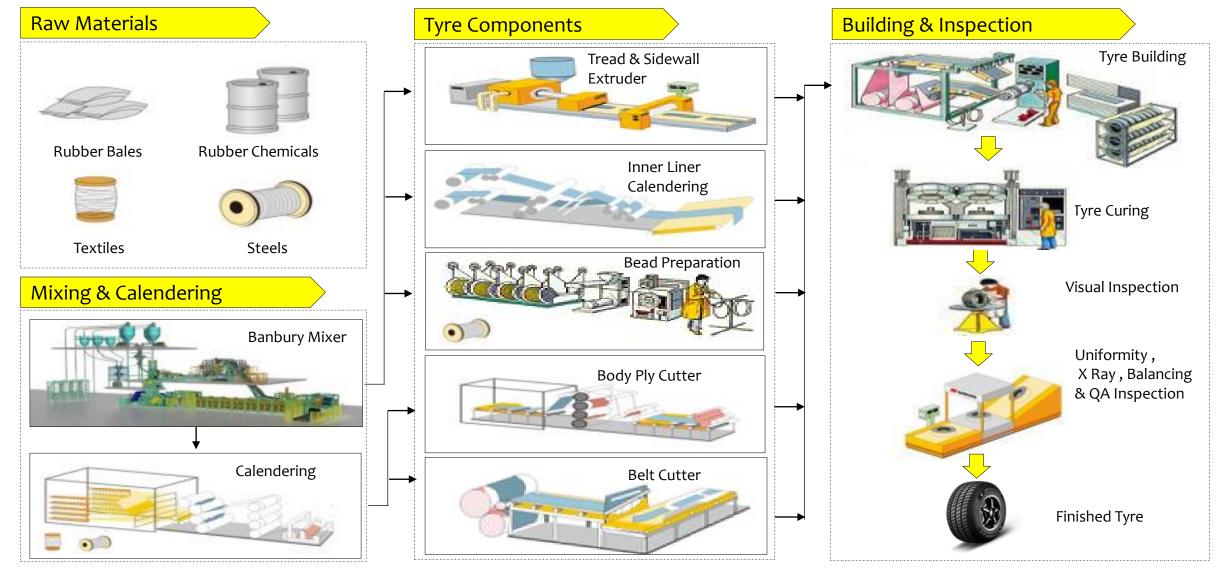
CII - NATIONAL AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT 2022

Team Members

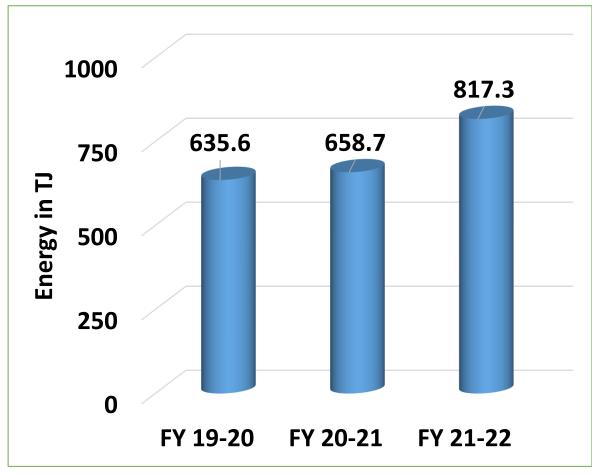
Name	Designation	E Mail Id
B.Rameshkumar	Head Engineering	Rameshkumar.b@jkmail.com
Bharathidasan.M	Head EEI	Bharathidasan.m@jkmail.com
M Pandiarajan	Head Utility	pandiarajan.m@jkmail.com

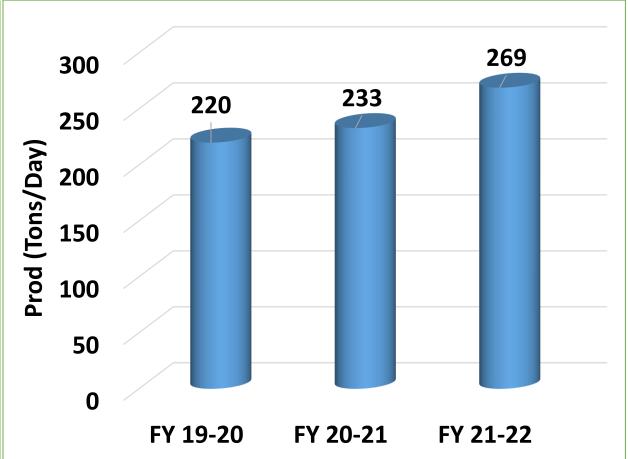
1. Company Profile

Modular designs for seamless expansion


Chennai Tyre Plant in Tamil Nadu is the 6th manufacturing plant of JK Tyre which went on stream on 05th February 2012 presently produces 45 Lakhs Passenger Car Radial (PCR) tyres and 12 Lakhs Truck / Bus Radial (TBR) tyres per annum. Salient Features of Chennai Tyre Plant Location Selection - Automobile Hub Most technologically advanced plant Equipment Selection for high Energy Efficiency Environment friendly technology considered during Plant Inception itself Zero Liquid Discharge Plant - certified by BSI Single use plastic free plant - certified by CII Zero waste to land fill - certified by BSI **Usage of Maximum Day lights** Highly optimized WIP material flow

2. Manufacturing Process

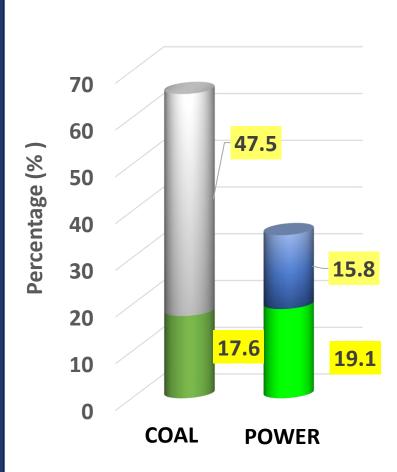


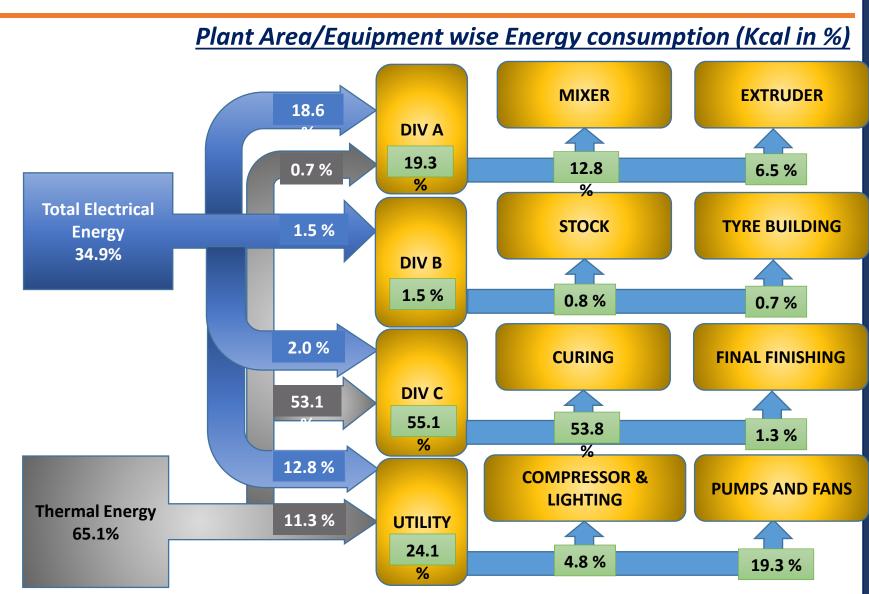


3. Overall Energy Consumption & Production Data – Last 3 Years

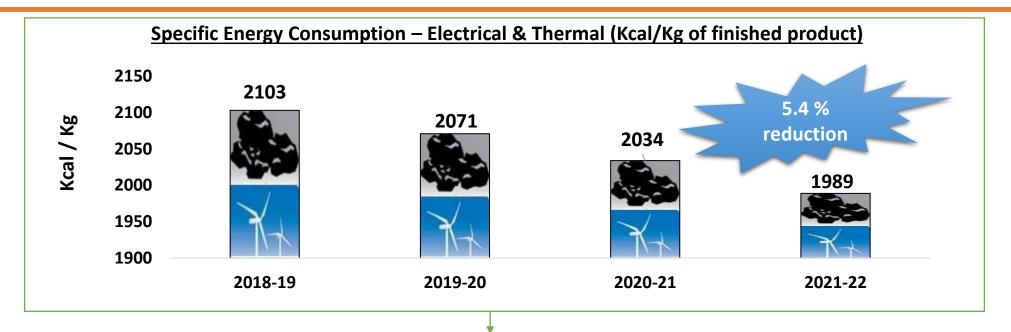
Plant absolute Energy consumption (in TJ)

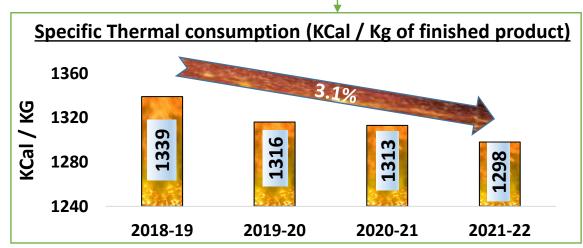
Plant Production (in Tons Per Day)

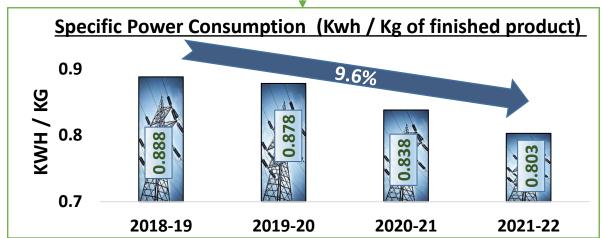




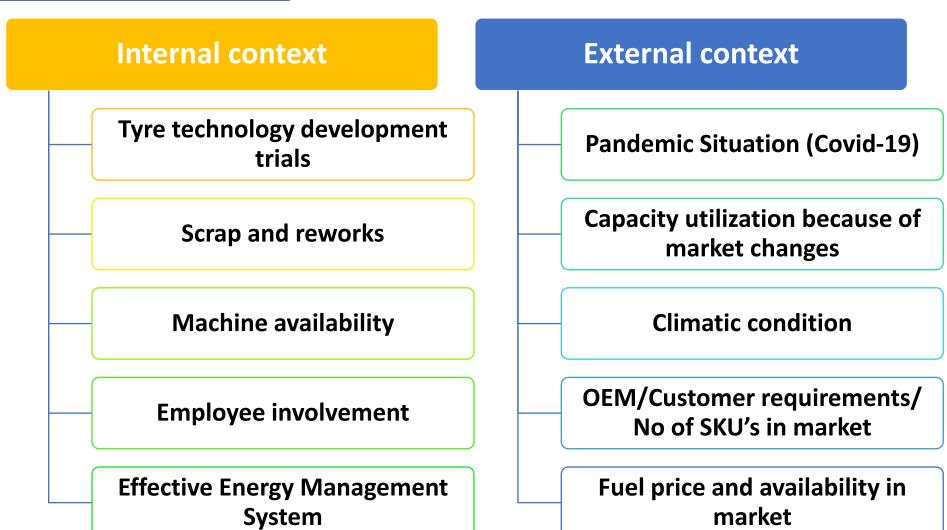
3. Energy Mapping 2021-22







3. Specific Energy Consumption Trend

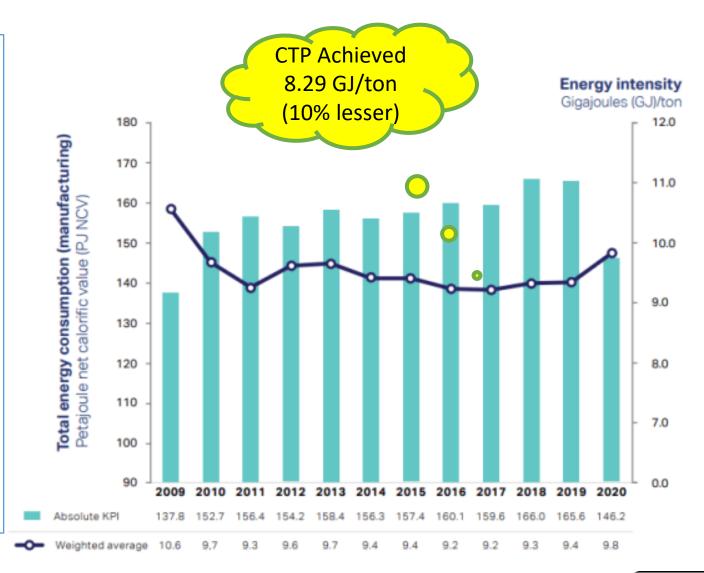


3. Reason for SEC Variation

Factors influence SEC variation

4. Benchmarking

Global Benchmarking

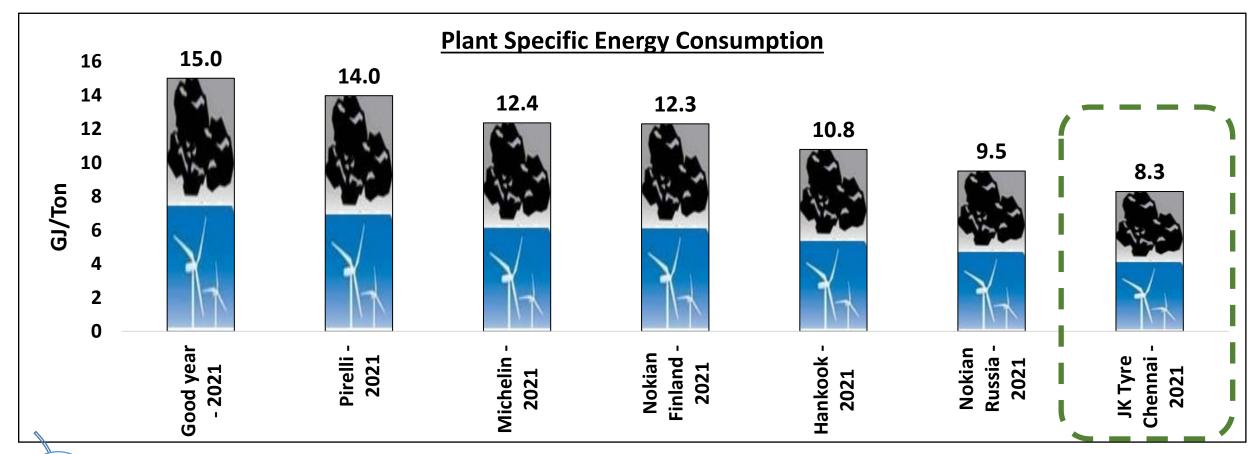

Members of the World Business Council for Sustainable Development (WBCSD) Tire Industry Project (11 Tyre companies) has published their weighted average Energy intensity for last 10 years; Minimum Specific power achieved is 9.2 GJ/Ton

Weighted average energy intensity:

Total energy consumption for 11 TIP members / Total production volume of these companies

Source:

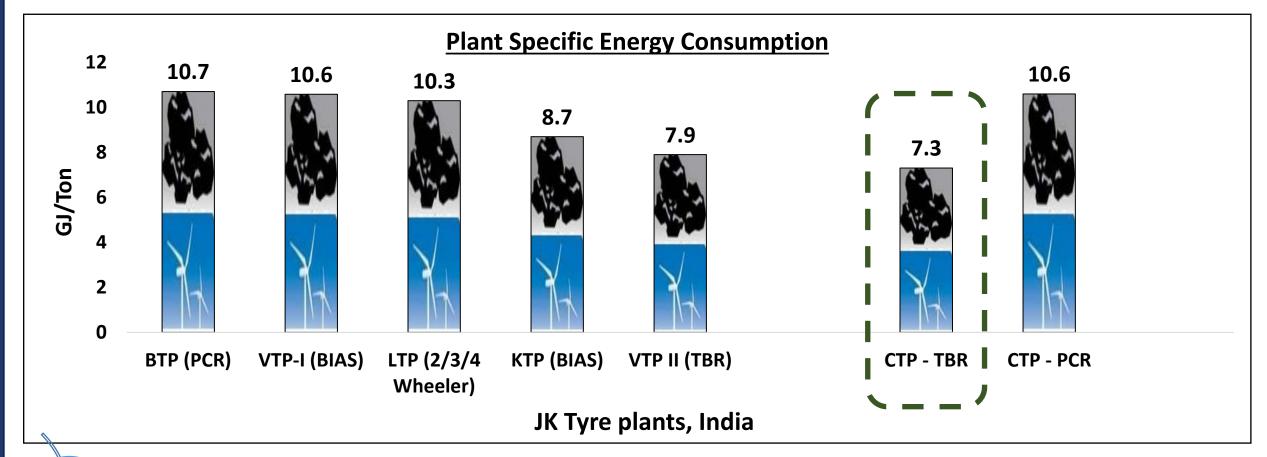
https://www.wbcsd.org/download/file/13500



4. Benchmarking

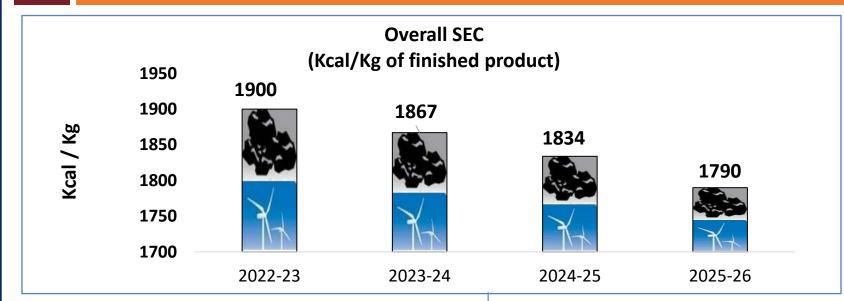
Global Benchmarking

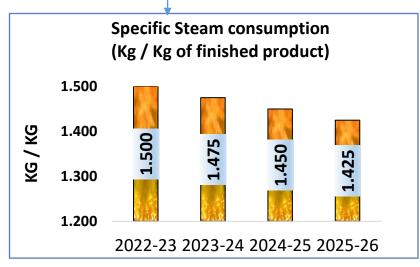
Chennai Tyre Plant is the one of the most Energy Efficient plant in the World. The Specific Energy values are taken from respective plant annual/Sustainable report published from their web page.

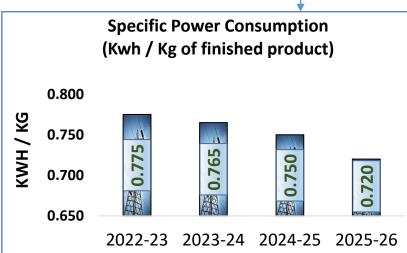

DATA

4. Benchmarking

Internal Benchmarking


Chennai Tyre Plant is the most Energy Efficient plant among JK Tyre group, having six plants located various parts in India (FY 21-22)





4. Long Term Vision on Energy Efficiency

Short term Targets

- Energy reduction Chillers & Compressors
- Nitrogen recovery and substitution to compressed air / PCI application.
- Energy Reduction in Rubber mixing process by reduction of cycle time

Medium Term Targets

- Innovative project implementation at AHU system – 75 Nos of fans
- Hot Nitrogen system in place of steam internal curing process.

Long term targets

- 80% Biomass fuel mix-up with coal @ boilers
- Increasing Renewable energy substitution from 100%

4. List of Major EnCon Projects Planned FY 22-23

	LIST OF ENCON PROJECTS PLANNED FY 22-23									
S.No.	Title of Project		Annual Electrical Cost Saving, Rs Million	Annual Thermal Saving, Million kcal	Annual Thermal Saving, Rs Million	Total Annual Savings, Million Rs	Investment Made (Rs million)	Payback months		
1	Back Pressure turbine 22- 15 Kg. Cm2 installation	2.00	13.15			13.15	12.5	11.4		
2	Platen insulation for TBR curing presses to eliminate surface radiation loss	0.00		1367.97		2.64	3.3	14.8		
3	Screw chiller replacement to VAM chiller for HVAC system	0.00		5937.38		11.46	7.2	7.5		
4	Dedicated compressor for ice blasting mould cleaning work (7 Kg/Cm2) @ curing presses so that eliminating high pressure generation loss (10 Kg/Cm2)	0.11	0.70			0.70	1.0	17.9		
5	Upgrading Plant Irrigation system from manual control to Automatic and web based portal monitor and control, which will eliminate manpower & water wastage	0.004	0.02			0.29	0.8	33.2		
6	Providing VFD on F270 Final and M440 Master TSS TCU pumps	0.03	0.17			0.17	0.5	35.7		
7	Shed Provide in TS-2 & TS-3 substation Distribution transformers to reduce transformer losses (5 nos)	0.04	0.23			0.23	0.8	38.6		
8	Drinking water RO reject recovery system	0.00				0.40	1.4	42.1		
9	440M & K310 Final Mixers belt driven low efficiency Fume extrcators blowers replacement with Direct driven High efficiency blowers	0.09	0.62			0.62	2.5	49.3		
10	Adiabatic cooling tower for Ejector & Hydraulic cooling water system	0.00				1.03	4.0	46.7		
11	Fresh Air ventilation units energy performance improvement by replacing belt driven centrifugal type blowers with direct copled, high efficiency axial fans with VFD control - 40 Nos	1.83	12.03			12.03	43.0	42.9		
		4.10	26.93	7305.35	0.00	42.72	76.94	21.6		

	LIST OF ENCON PROJECTS IMPLEMENTED FY 21-22									
S.N	lo. Proj No.	Title of Project Mi		Annual Electrical Cost Saving, Rs Million	Annual Thermal Saving, Million kcal	Annual Thermal Saving, Rs Million	Total Annual Savings, Million Rs	Investment Made (Rs million)	Payback months	
1	CEP 75	ncreasing Boiler feed water temperature from 105 to 115 by using flash steam.			2143.23	4.14	4.136	0.45	1	
2	CEP 76	Cogged belt with weightless pulley replacement @ Air handling units, in place of V belt and higher weight pulley (20 Nos)	0.266	1.749			1.749	1.00	7	
3	CEP 77	To improve the Energy Performance in Mixer Batch off Fan group by optimizing the Speed (Air Flow) of Fan - 5 Mixers	0.129	0.844			0.844	0.6	9	
4	CEP 78	Quintoplex & Triplex machines BD water recovery				0.284	0.284	0.23	10	
5		Small NIBR Boiler 0.5 TPH for 4 roll calandar machine early startup, which will eliminate early startup of 35TPH big capacity boiler during plant shutdown startup time, thus by saving energy.	0.007	0.043	575.42	0.802	0.845	0.85	12	
•	CEP 80	Fresh Air ventilation units energy performance improvement by replacing belt driven centrifugal type blowers with direct copled, high efficiency axial fans with VFD control - 9 Nos	0.391	2.570			2.570	7.00	33	
7	CEP 81	VFD on FAN with temperature controller @ Process Cooling Tower and VAM cooling towers 0.031 0.203			0.203	0.35	21			
8	CEP 82	TBR hydraulic pressure optimisation. Operating Pressure reduction from 23Kg/Cm2 to 19 Kg/Cm2		0.695			0.695	1.10	19	
ç	CEP 83	Air Flow Meter Installation to process areas to set bench mark on consumption (CFM/Kg) and by eliminating losses and air consumption in the process - 10 Nos		3.499			3.499	1.00	3	
			1.462	9.603	2718.65	5.22	14.825	12.58	10	

LIST OF ENCON PROJECTS COMPLETED FY 20-21 Annual **Annual** Annual Annual Total Annual Investment **Electrical Electrical Thermal Payback** Thermal S.No. Proj No. **Title of Project** Savings, Made (Rs Saving, Cost Saving, Saving. Saving, months million) Million Rs Million kWh **Rs Million** Million kcal **Rs Million** Air handling units operation optimisation based on machine sceduling and **CEP 66** 0.37 2.42 2.42 0 manpower occupation CEP 67 Reduction of power consumption in in WTP & ETP by using TTRO water 2.11 0.32 2.11 0 35TPH Boiler fan system performance improvement by leak arresting and improving **CEP 68** 0.30 1.98 1.98 0 the draft pressure CEP 69 Quintoplex/Quadraplex/Triplex cooling water circuit elimination project 1.57 1.57 0.24 0 0 VAM fixed energy consumption reduction plan by operational optimization / **CEP 70** 0.64 0.10 0.64 0 machine schedule (FY 20-21) One Process Cooling Tower Stoppage, Mixer cooling water flow cutoff while mixer in **CEP 71** 4.07 0.50 0.62 4.07 1 idle condition, thereby saving PCT pump energy Separating the headers for PCR curing hydraulic and ejector circuits, the **CEP 72** Ejector pressure can be maintained at 16 Kg/cm2, where as the Hydr 0.47 15 0.07 0.47 0.60 requirement can be separately maintained for 22 Kg/cm2. Introducing Thermo compressor in Low Pressure steam (LPS) line by using flash steam **CEP 73** 0.00 0.00 437 0.37 0.37 0.50 16 for reducing LPS steam consumption **CEP 74** Vapour compression chillers for Extruders in place of VAM Chillers 0.00 2183 2.40 2.40 24 0.00 4.80 2.02 13.26 2619.9 2.77 16.03 6.40

	LIST OF ENCON PROJECTS IMPLEMENTED IN 2019-20									
S.No	. Proj No.	Title of Project		Annual Electrical Cost Saving, Rs Million	Annual Thermal Saving, Million kcal	Annual Thermal Saving, Rs Million	Total Annual Savings, Million Rs	Investment Made (Rs million)	Payback months	
1	CEP 56	Mixer TCU CWS valve replacement		2.07			2.07	1.12	6	
2	CEP 57	VFD for HP compressor to avoid unloading timimng losses (VFD conversion)	0.04	0.28			0.28	0.15	7	
3	I CEP 38	Provide VFD on another 22KW and 7.5KW pump to avoid throttling - WTP RO pump	0.030	0.20			0.20	0.28	17	
4	CEP 59	Modified and Installed third stage in New ETP and Reduced Steam & Power Consumption in EVAPORATOR			1597.5	0.76	0.76	1.10	17	
5	CEP 60	Stopping one fanless cooling tower in old Ejector & Hydraulic	0.032	0.208			0.21	0.15	9	
6	LEPNI	To isolate PCR and TBR Header and distribution system to make them independent thus the Pump operation to be optimised	0.213	1.385			1.38	0.60	5	
7		Shed Provide in TS-2 substation Distribution transformers to reduce transformer losses	0.080	0.519			0.52	0.30	7	
8		Air handling units operation optimisation based on machine sceduling and manpower occupation	0.584	3.793			3.79	0.00	0	
9	CEP 64	To improve the Energy Performance in Mixer Batch off Fan group by optimizing the Speed (Air Flow) of Fan - F270 Final Mixer	0.023	0.150			0.15	0.12	10	
10	CEP 65 Existing design of Nitrogen pumping system modified to avoid the vent losses during Nitrogen unloading (High pressure pump used in place of low pressure pump)		0.018	0.117			0.12	0.00	0	
			1.340	8.712	1597.5	0.756	9.47	3.82	5	

EnCON Projects Summary

2021-22

DESCRIPTION	ZERO INVESTMENT	WITH INVESTMENT	TOTAL		
Projects in (Nos)	0	9	9		
Total savings in (Million Kcal)	0	3976	3976		
Total Savings in (Million Rs)	14.83				
Total Investment in (Million Rs)	12.58				
Payback in (Months)	10				

2020-21

DESCRIPTION	ZERO INVESTMENT	WITH INVESTMENT	TOTAL		
Projects in (Nos)	5	4	9		
Total savings in (Million Kcal)	1142	3214	4356		
Total Savings in (Million Rs)	16.03				
Total Investment in (Million Rs)	6.40				
Payback in (Months)		5			

2019-20

DESCRIPTION	ZERO INVESTMENT	WITH INVESTMENT	TOTAL		
Projects in (Nos)	2	8	10		
Total savings in (Million Kcal)	517	2233	2750		
Total Savings in (Million Rs)	9.47				
Total Investment in (Million Rs)	3.82				
Payback in (Months)	5				

Project Name: To eliminate Coal and Power Consumption of Boiler during restart of plant after shutdown

Problem/Present status:

- During plant shutdown startup, due to process heating requirement (4roll calendar) the coal fired boiler need to be started much earlier (8 Hrs).
- To avoid the early startup of boiler we required alternative suitable solution.

Solution:

Introducing Separate electric boiler for 4Roll Calendar process (TCU) to avoid early startup of Coal fired Boiler during plant shutdown startup time.

- Known concept but unique application.

Small capacity boilers are commonly used by industry in various applications. However we are using the concept in new area (4 roll calendar machine) first time in Tyre industry, which includes major modifications in the existing equipment setup beyond OEM design

Result

Average 45 Running Hrs (9 earlier startups) of higher capacity boiler saved.

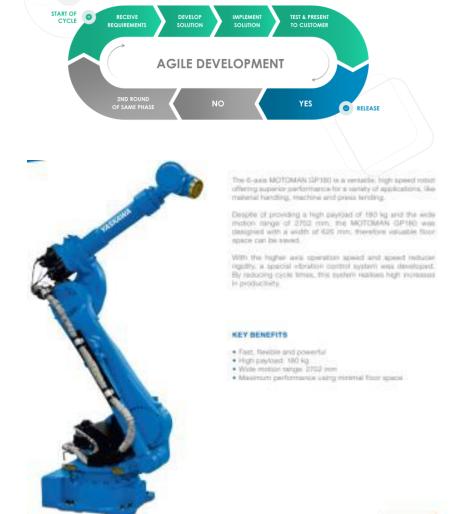
Investment: 8.5 L Rs

Savings:

170 MT/annum Coal

17 L Rs/annum

ROI: 6 Months


Project Name: Improve the Quality of Green Tyre Painting by using Robot in Truck Bus Radial section

Problem/Present status:

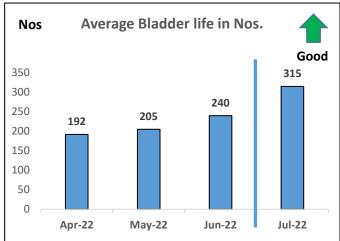
- Tubeless Green Tyre (GT), while doing Painting (Lube), uneven application happen due to Bowl type pneumatic finger gripper method machine used for painting.
- Higher machine breakdown and GT Scarp.
- Low Bladder Life & High defect

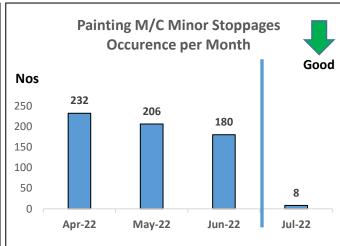
Solution : Customized Robot application developemnt

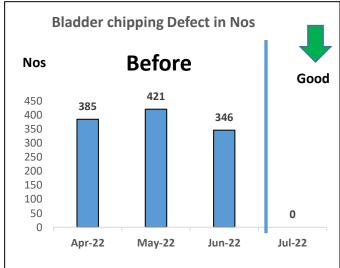
Advantages: Idle time loss and scrap loss eliminated

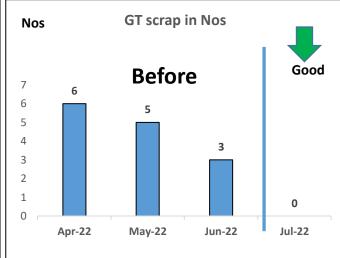
Investment: 50 Lacs Rs

Savings: Energy, Scrap, Bladder life, Defects

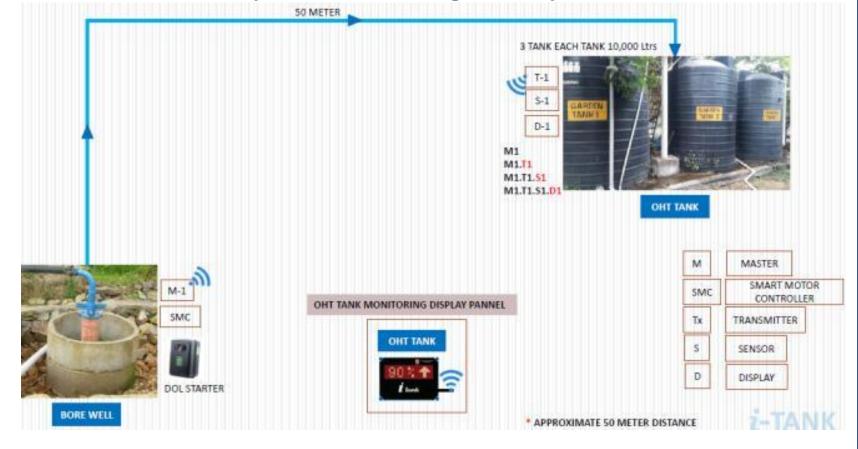

Energy savings of 42600 Kwh/annum


Total Cost savings of 15.0 Lacs Rs


ROI: 3.3 Years



Result:



Project Name: Upgrading Plant Irrigation system from manual control to Solar based Smart water management system

Problem/Present status:

- Presently we are watering 25
 Acres of greenbelt area.
 Following are the concerns
 during this process.
- Dry running of pump and failures
- Frequent water tank Overflow
- Non availability of data like water/power consumption
- Manual control leads careless and over irrigation

Solution: Fully Automatic irrigation system

Advantages:

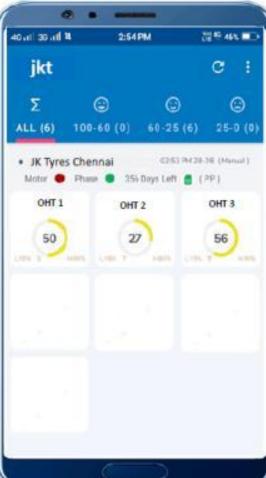
- No Manual irrigation
- Periodic Auto and remote control
- Stops Over Flow
- Stops Dry Run
- Accountability for Water Consumption

Result

Average 45 Running Hrs (9 earlier startups) of higher capacity boiler saved.

Investment: 8 Lacs Rs

Savings:


1 Manpower

10KL/Day water

2.9 L Rs/annum

ROI: 2.8 Years

7.a Utilization of Renewable Energy Sources - Electrical

FY 2019-20

Type of Energy	ON Site / OFF Site	Installed capacity (MW)	Generation (million kwh)	% of overall electrical energy
Solar	ON site	6.0	7.954	11.78
Wind	OFF Site	15.2	29.93	44.34
TOTAL		21.2	37.88	56.12

FY 2020-21

Type of Energy	ON Site / OFF Site	Installed capacity (MW)	Generation (million kwh)	% of overall electrical energy
Solar	ON site	6.0	6.79	10.36
Wind	OFF Site	15.2	31.178	47.57
TOTAL		21.2	37.97	57.93

FY 2021-22

Type of Energy	ON Site / OFF Site	Installed capacity (MW)	Generation (million kwh)	% of overall electrical energy
Solar	ON site	6.0	6.70	9.4
Wind	OFF Site	24.0	36.21	45.3
TOTAL		30.0	42.91	54.7

PLAN - FY 2022-23

Type of Energy	ON Site / OFF Site	Planned Capacity (MW)	Generation (million kwh)	% of overall electrical energy
Solar	ON site	8.0	10.5	12.5%
Wind	OFF Site	24.0	49.0	58.3%
TOTAL		32.0	59.5	70.8 %

- Onsite Solar is Captive Power
- OFF Site Wind is Group Captive (26% Share)

7.b Utilization of Renewable Energy Sources – Thermal

FY 2019-20

Type of Energy	ON Site / OFF Site	Equivalent energy savings (Mkcal)	% of overall Thermal energy	Biomass usage (%)
Biomass	ON site	6088	5.92	6.89
Wood/Garden	ON site	180	0.18	0.08
TOTAL		6268	6.10	6.97

FY 2020-21

Type of Energy	ON Site / OFF Site	Equivalent energy savings (Mkcal)	% of overall Thermal energy	Biomass usage (%)
Biomass	ON site	5398	5.01	7.20
Wood/Garden	ON site	165	0.15	0.06
TOTAL		5563	5.16	7.26

FY 2021-22

Type of Energy	ON Site / OFF Site	Equivalent energy savings (Mkcal)	% of overall Thermal energy	Biomass usage (%)
Biomass	ON site	19194	16.58	26.34
Wood/Garden	ON site	152	0.13	0.09
TOTAL		19346	16.71	26.43

PLAN - FY 2022-23 / Target - 50%

Type of Energy	ON Site / OFF Site	Coal savings	% of overall Thermal energy	Biomass usage (%)
BIOMASS	ONSITE	70574	47	50

8. Waste Utilization & Management

1.PLANT VEGETATION WASTE USED AS FUEL FOR BOILER:

Plant Vegetation Waste collected and used in boiler by shredding

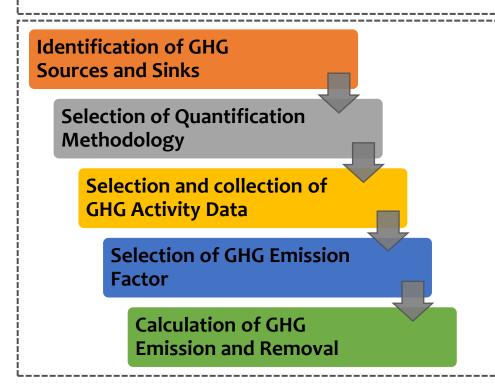
FY 20 – 21 – total Qty used – 14.2 MT

2.ASH RECYCLING FOR UNBURNT REDUCTION

Bed Ashes are collected from the Boiler Bank Zone, Economizer & APH Hopers where Un burnt content is high. Collected Ashes are recycled in the Boiler for further combustion. Unburnt content reduced from 8% to 6%

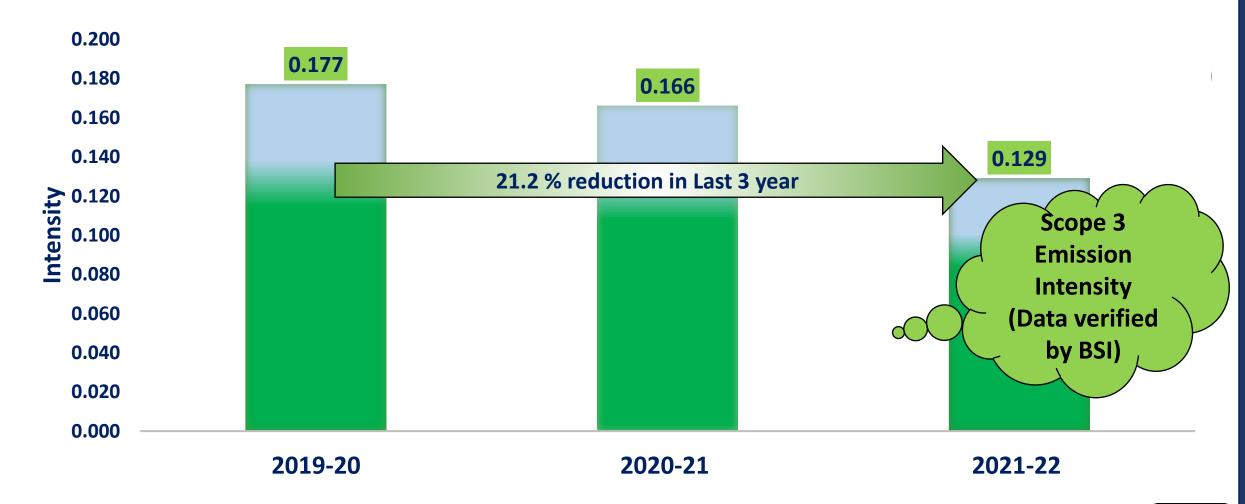
3.OTHER WASTE

	Waste	Unit	2018-19	2019-20	2020-21	2021-22	Generation	Recycle /Reuse	Disposal
Α	Metal scrap	Tons	157.56	83.83	61.88	59.56	Maintenan ce Activity	Reused to make MS parts	Sent to authorized
В	Rubber	Tons	576.61	363.07	191.13	179.2	Process	Reused for Rubber Parts	recycler for reuse
С	Paper	Tons	319.33	240.59	234.99	228.3	Office	Reused for making cardboard & paper bags.	
D	E-Wastes	Tons	0.79	4.16	1.41	1.13	IT &EEI	Recycled	Sent to authorized vendor for recycling.
E	Polythene	Tons	297.71	236.03	226.81	199.2	Process	Reused for making Tarpaulin and Poly ropes	Sent to authorized recycler for reuse


100 % Food
Waste generated
is converted into
Manures

Carbon foot print of any entity is the measure of the Green House Gas (GHG) emitted due to the activities of that entity.

- All Plant (decentralized level) GHG Inventorisation
- Rolling up the inventory to Corporate Level


Setting GHG Operational Boundaries Emission Sources:						
Emission Sources	Scope of Emission					
Diesel for internal material transport						
Diesel for generators						
Boiler coal						
HSD (High speed diesel)						
Company vehicle-Diesel	Diverse Engineery (see no. 1)					
Company vehicle-Petrol	Direct Emission (scope 1)					
LPG consumption (GH)						
Release of refrigerant						
Use of Acetylene						
Weight of CO2 released from fire extinguishers						
Overall purchase of Electricity Energy	Indirect Emission (scope 2)					
Material Logistics (Raw Material & FG						
Transportation)						
Business Travel	Other Indirect Emission					
Employee Commute	(Scope 3)					
Waste Disposal						

EMISSION INTENSITY GRAPH (CO2E TON/TON OF TYRE

Greening the Environment

Tree Plantation with in Fence

- Tree Plantation with in Fence
- Tree Plantation Beyond the Fence

	N THE LOCAL PROPERTY OF THE PARTY OF THE PAR	
Parameter	Unit	Value
a. Estimated total volume of wood in bole / trunk (Green)	cum (1,885.06
b. Estimated total weight of wood in bole / trunk (cum x 0.8 t)	tonnes (t)	1,508.05
c. Estimated total woody biomass (@1.71)*	tonnes (t)	2,578.77
d. Less moisture. Dry Biomass (c/2)	tonnes (t)	1,289.38
e. Estimated carbon in biomass (c/2)	tonnes (tc)	644.69
f. Carbon capture (e x 44/12)	tonnes (tCO ₂)	2,363.87

9. GHG Inventorisation - Carbon Offset Calculation

Spreadsheet calculation demonstrating emission Offset values

S.N.	Description	Unit	СТР	Total	fuel Density (kg/m³)	fuel Consumptio n (kg)	NCV (TJ/Gg)	emission factor (t CO ₂ /TJ)	Emission (t CO ₂)
Genera	al Information								
Α	Production	MT	95237.75898	95238					
В	Tree Plantation	Nos							
	1.1 Coal Consumption	MT	25119	25118.8		25118810.0			37664
1	Coal net calorific value	kcal/kg	3731	3731.3	4	This is Av	erage calorific	value	
	1.2 Charcoal Consumption	MT	3.81	3.8		3810.0	29.5	112.0	12.6
	Diesel (Stationary)								
2	2.1 Genset (Including GH+Hydrant)	Ltr	28453	28453.0	820	23331.5	43.0	74.1	74.3
	2.3 Boiler-Startup		11283	11283.0	820	9252.1	43.0	74.1	29.5
	Diesel (Movable)								
3	3.1 Company Operated vehicle	Ltr	9536	9536	820	7819.5	43.0	74.1	24.9
3	3.2 Diesel for Forklift	Ltr	31206	31206	820	25588.9	43.0	74.1	81.5
	3.5 Coal Handling-JCB	1	17191	17191	820	14096.6	43.0	74.1	44.9
	Petrol (Movable)	14						•	
4	4.1 Company Operated Vehicles	Ltr	379.8	380	720	273.5	44.3	69.3	0.8
5	Fire Extinguishers - CO2	kg	391	391		391.0			0.4
_	Air Conditioners – Refrigerants								
6	6.1 Type 1 (R22)	kg	444	444		444.0	1810		803.6
_	LPG Consumption								
7	7.2 Canteen, Pantry & Guest house	kg	114	114		114.0	47.3	63.1	0.3
11	Welding - Acetylene	m ³	169.5	170		5985		0.1100	0.7
SCOPE	SCOPE 2								
						Emissio	n factor (kg C	O _o /kWh)	Emission (t
									CO ₂)
D l	and Elegation from Cold	1344	25400040	25422242			an Ond (NEV	VIVE & 3)	
									29609.2
Renew	vable Energy	kWh	43726549	43726549		0.82			35855.8
Emission factor (kg CO ₂ /kW Same for all Grid (NEWNE & Same for all Gr									

GHG Emission-	CO2 e Tons
Scope 1 Emission	38737
Scope 2 Emission	29609
Scope 3 Emission	12358
Renewable Energy	35856
Total	116560
Renewable Energy (Carbon Offset)	35856
Biomass as Alternate Fuel (Green Fuel)	4024
Carbon Offset due to Tree Plantation	2363
Total	42243
	36.2
36.2 % offset/sequestrati on with respect to overall emission	

1st Indian tyre company to have verified Carbon Footprint as per IS-14064

CARBON FOOTPRINT VERIFICATION VERIFICATION OPINION STATEMENT

This is to verify that: JK Tyre & Industries Ltd.

Link House 3 Bahadur Shah Zider Marg New Delhi 110 002

Holds Statement No: CFV 637319

Verification opinion statement

As a result of verification procedures, it is the opinion of BSI with reasonable assurance that:

- The Greenhouse Gas Direct and Energy Indirect Emissions for the period from 01/04/2019 to 31/03/2020 is 246,992 tonnes of CO2 equivalent for JKTIL, and 187,541 tonnes of CO2 equivalent for CIL.
- The inventory year for the period from 01/04/2013 to 31/03/2014 is considered as the base year for JKTS.
- The inventory year for the period from 01/04/2017 to 31/03/2018 is considered as the base year for CIL.
- . Emissions due to blomass combustion is separately quantified.
- Main operational activities canted out in the defined organizational boundary include 'Design and Manufacture of Conventional (Bias), Radial Truck, Bus & Car Tyres, Tubes and Flaps, Off the Road Tyres & Pre-Cured Tread Rubber'.
- No material misstatements in the selected year Greenhouse Gas Emissions calculation for JK Tyre & Industries Limited were revealed.
- Data quality was considered acceptable in meeting the principles as set out in ISO 14064-1:2012.

Theuns Kotzle, Managing Director - IMETA Assurance

For and on behalf of BSI: Onunally registered: 26/08/2020

Latest Issue: 26/08/2020

making excellence a habit."

The first Property designs to the power of the observation of the control of the

SEE India Notice to the Milks Common State pt. 5, Nor and Stewn Stage Matters Stad Services India critical Section (See Section 1984).

Green House Gases Emission Annual Report 2020-21

Quantification of Green House Gases Emission Revision 01

Date: 25/04/2021

10. Green Supply Chain Management

GREEN PURCHASE POLICY

Objective

To responsibly purchase products and services by considering environmental protection issues into the sourcing decision making process and to encourage all upstream suppliers to adopt green manufacturing and green supply chain, so as to not only reduce the environmental degradation, but to possibly have a positive impact on the environment and to show commitment towards continual improvement, prevention of pollution and to comply with all the applicable legal requirements.

Scope

This Policy applies to the following categories such as Raw Materials, Engineering Spares, Capital Equipment, Tools, Moulds, Dies, and Service offerings.

Focus Areas:

- 1. Aim to source products and services that minimize environmental impact in the following areas:
 - . Energy efficiency, Water conservation and waste reduction
 - . Prevention/reduce the use of hazardous substances
 - Proactive product stewardship & Life cycle assessment Aspects
 - . Conserve the resources of the planet
 - . Use renewable energy
- We are committed to support our suppliers in adopting green practices through awareness creation and training on the compliance requirements.
- 3. We give preference to suppliers who adopt green practices in addition to QCD performance in the following areas:
 - Reduce specific energy and water consumption
 - . Minimizing the Green House Gas emissions & measure the carbon footprint
 - Minimizing the generation of waste and safe disposal of the hazardous wastes generated
 - . Recycle & reuse material to reduce absolute consumption
 - . Incorporating the use of renewable resources
- We shall seek to implement the hicrarchy of preference to avoid, reduce, reuse, recycle, recover, prevent and dispose throughout the sourcing activity.
- We commit ourselves to set and review the objectives and targets for the continual improvement in all the areas of our operations through everyone's involvement.

K A Unni Nayar Vice President Works Chennal Tyre Plant

SUPPLIER VISITS: TO SHARE THE GREEN PRACTICES

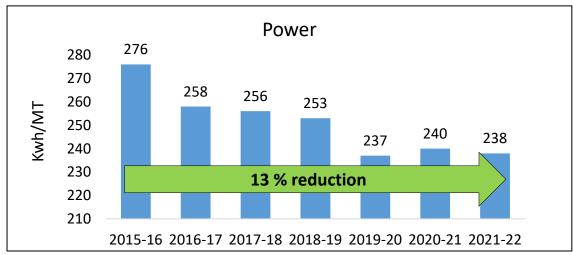
Annual Energy Conference is organized to share the Energy Projects, Improvements & Best practices within JK organization, Supplier and Vendors. Horizontal deployment done across the verticals based on the Applicability of the Projects.

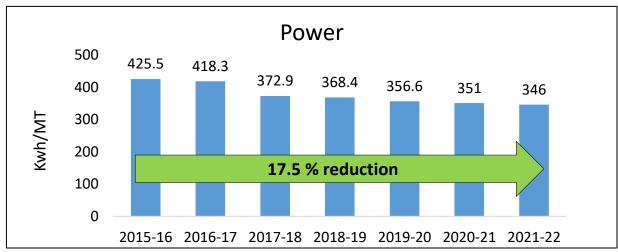
10. Green Supply Chain Management

S.N o	Material	Green Procurement Guideline
1	Energy Products	100% Procurement of BEE Star rated products (Motors, AC's, LED etc)

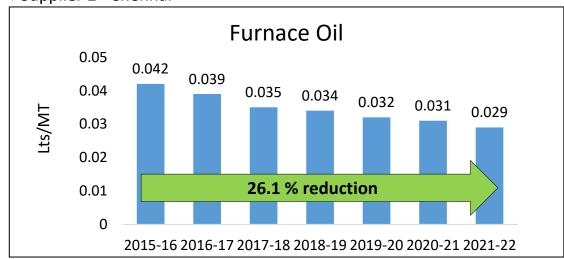
OTHER INITIATIVES:

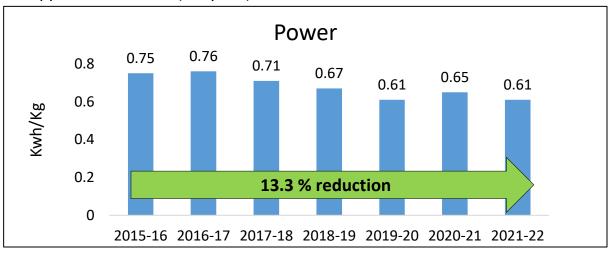
- Requirement of energy efficiency gets reflected in all Purchase documents
- Transport route optimization: Raw material supply truck used to carry our finished goods to various customers and depots.
- We minimise the transit distance by selecting the vendor which is near to our plant.
- Coins type stuffing to Lacing type stuffing for increasing load capacity and reduce trucks & fuel.





10. Green Supply Chain Management


❖Supplier 1 – Pondicherry

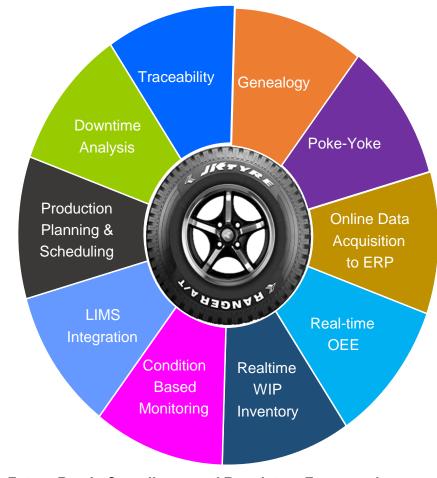

❖Supplier 3 – Alwar

❖Supplier 2 –Chennai

❖Supplier 4 –Chennai (Recycler)

Energy Management System – Plus Breaker Control – Plant over all architecture

- ✓ <u>IOT based</u> advance Energy management system connected with 1013 Energy meters and 256 Nos Breakers
- ✓ EMS plus breaker controlling system to control energy
- ✓ System alerts the excess energy consumption immediately thro <u>Auto SMS</u>, and <u>E-mail</u> helps to take appropriate actions immediately rather than afterward investigation
- ✓ System <u>records Sag/swell</u> <u>and transients</u> and all electrical parameters at the <u>sampling rate of 1024</u> <u>samples/cycle</u>


IOT based advance Energy management system – Key deliverables

Real-time WIP monitoring; Input-Output ratio tracking

Real-time OEE of workcenter, Condition based monitoring

Downtime Analysis, Cycle-time Analysis, comparative process data analysis

Real-time Data Exchange between ERP and Shop Floor

Future Ready Compliance and Regulatory Framework

Activity Based Energy Monitoring

Centralized Recipe Management that leverages for Time to Market

Predictive Analytics

Enhanced FIFO, Aging Monitoring and Adherence

Review Mechanism

- □ Daily Review Meeting chairedby Plant Head
- Monthly Energy Reviewmeeting chaired by DirectorManufacturing
- Monthly Business ReviewMeeting chaired by President –India Operations
- ☐ EnMS Management ReviewMeeting chaired by Plant Head– Half Yearly

Rewards & Recognition Scheme

JK TYRE encourage the practice of continuously improving new ideas, suggestions and recommendations pertaining to energy efficiency and recognizing and rewarding ideas, which add value to the company's operations

- ☐ Star Performers of the Quarter Relevant to its Scope of Work (Includes Energy Performance)
- Monthly Best Performance Award
- Best Kaizen and Suggestion Award
- ☐ Participation in Break Through Projects JK organization Level Competition
- ☐ Self Development Scheme for Higher Education
- ☐ Participation in Kaizen & CFT Competitions (Regional Level)
- ☐ Encouraging to participate in National Conference to acquire knowledge on recent technologies so that same can be applied based on applicability
- ☐ Spot Awards for uncertainty identification
- ☐ Core Training to the identified personal for skill enhancement

- 1. Class room training –All Employees and relevant stakeholders were trained with Green Initiatives like plant Energy consumption & Energy efficiency methodology in planned intervals
- 2. Visual aids Training has been taken with different visual aids for better understanding on Green Initiatives.
- 3. Displaying posters On shop floor stickers/posters were pasted to create awareness in every individual.
- **4. Cross Functional Team /Kaizens** In shop floor, CFT Approach followed to understand the Energy consumption & process of their equipment/machine.
- **5. Motivation by Awards & Recognition** Awards & recognition has been given to employee and stakeholders upon their performance which can be indicated as KAIZEN's etc.,

Energy Conservation day celebration @ plant

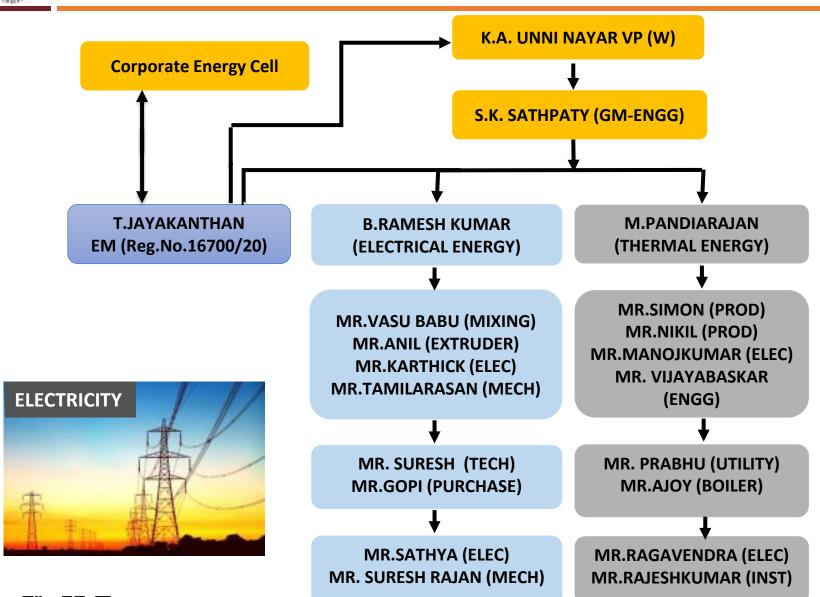
National energy conservation day celebrated our plant on Dec'14th day to encourage people for efficient energy use in order to reduce the energy consumption and prevent the energy loss both in factory as well as daily lives.

Energy Pledge of Chennai JK Tyre Plant

On National Energy Conservation Day I pledge my wholehearted commitment towards energy conservation in my daily lives that will reduce greenhouse gas emissions and help protect our climate and preserve the environment for years to come. I understand that energy consumption affects our natural environment and human health and wellbeing.

I pledge that I will strive to:

- ☐ Improving machine efficiency by reducing energy wastage and losses, through improved operation and maintenance.
- ☐ Encourage my workforces to avoid excessive and wasteful uses of energy to reduce energy consumption.
- ☐ I Promote people for less energy usage by eliminating the excessive and wasteful uses.



11. Energy Management Team

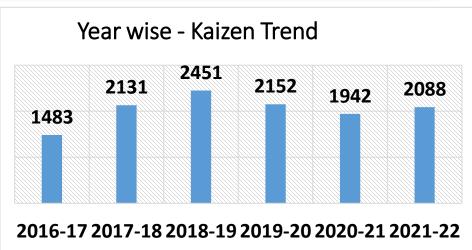
- ☐ Energy Auditors As per ISO 50002:2014 3 Nos
- ☐ BEE EM Certified 2 Nos

11. Energy Budget

ENERGY - SMALL PROJECT

YEAR	PROJECT NOS.	BUDGET ALLOCATED (Rs. in Lacs)	SAVINGS REALISED (Rs. in Lacs)	ROI (Years)
2022-23	11	769.4	427.2	1.8
2021-22	9	86.62	103.5	0.84
2020-21	9	64.1	152.0	0.42
2019-20	10	38.2	94.7	0.40
2018-19	8	135.9	132.4	1.0
2017-18	12	109.8	309.1	0.36

ENERGY – LARGE PROJECT


YEAR	BUDGET ALLOCATED (Rs. in Lacs)	PROJECT DETAIL
2022-23	500	1.5MW ROOF TOP SOLAR
2021-22	25	BIO MASS STORAGE
2019-20	600	IOT BASED ENERGY MONITORING
2017-18	1500	3MW ROOF TOP SOLAR
2016-17	105	ADVANCED EMS SYSTEM & BREAKER CONTROL
2016-17	2000	3MW ROOF TOP SOLAR

AVG INVESTMENT % ON TOTAL TURNOVER

Last Six years, JKTIL Chennai Tyre plant spent Average of Rs. 989 Lacs per annum for EnCON projects

- ☐ Investment is 0.43 % in total turnover.
- ☐ Avg savings realised 1219 lacs per annumROI 10 Months

PROJECT IMPLEMENTED THROUGH KAIZENS

12. ISO 50001/Green Co /IGBC Rating

13. Learning from CII & Other Award Program

CII National Award for Excellence in Energy Management is an excellent platform to benchmark our Energy Performance and to showcase the efforts and achievements.

The award builds our BRAND and National wide recognition

Imparting the requirements stated in the Energy award program supported us to improve our Energy performance which has raised our capabilities to work and receive this National Energy leader award.

The preparation for award application helps to inspire and align the entire workforce and rapidly accelerates the PACE OF SYSTEM IMPROVEMENT.

14. Awards & Accolades

CII –National Energy Leader 2018,2019,2020&2021

BEE – National Energy Conservation

Award 2014,2015&2021

CII - Green Co Certification 2019 - Platinum

CEM Global award - Excellence in Energy Management 2019 – First company from India

Golden Peacock Energy Efficiency
Award 2017

SEEM National Energy Management Award 2016,2017,2018,2019 & 2020

Rameshkumar.b@jkmail.com

